
ByCounter Manual

ByCounter: Portable Runtime Counting of
Bytecode Instructions and Method Invocations

Manual

May 9th, 2011

Michael Kuperberg Martin Krogmann

Chair for Software Design and Quality
Institute for Program Structures and Data Organisation

Faculty of Informatics, Universität Karlsruhe (TH)

Abstract

For bytecode-based applications, runtime instruction counts can be used as a plat-
form-independent application execution metric, and also can serve as the basis for
bytecode-based performance prediction. However, different instruction types have
different execution durations, so they must be counted separately, and method invo-
cations should be identified and counted because of their substantial contribution to
the total application performance. For Java bytecode, most JVMs and profilers do
not provide such functionality at all, and existing bytecode analysis frameworks re-
quire expensive JVM instrumentation for instruction-level counting. ByCounter
is a lightweight approach for exact runtime counting of executed bytecode instruc-
tions and method invocations. ByCounter significantly reduces total counting
costs by instrumenting only the application bytecode and not the JVM, and it
can be used without modifications on any JVM. It has been successfully applied
to multiple Java applications on different JVMs, and is used for bytecode-based
performance prediction.

Key words: Java, bytecode, counting, portable, fine-grained

1 Introduction

The performance of a Java application can be described by analysing the
execution of the application’s Java bytecode instructions. Execution counts
of these instructions are needed for bytecode-based performance prediction
of Java applications [1–3], and also for dynamic bytecode metrics [4]. As
different instruction types have different execution durations, they must be

Copyright 2008++ by the authors and the Chair for Software Design and Quality,
Institute for Program Structures and Data Organisation (IPD),

Faculty of Informatics, Universität Karlsruhe (TH)
URL: http://bycounter.ipd.uka.de



ByCounter Guide (Kuperberg, Krogmann)

counted separately. Also, method invocations should be identified due to
the substantial contribution of methods to the total application performance.
Thus, each method signature (incl. the Java API methods) should have its
own counts. To obtain all these runtime counts, static analysis is impractical
and too complex, so it is usually faster and easier to use dynamic (i.e. runtime)
analysis for counting executed instructions and invoked methods.

However, dynamic counting of executed Java bytecode instructions is not
offered by Java profilers or conventional Java Virtual Machines (JVMs). By-
Counter’s competitors such as (such as JRAF [5]) either have serious short-
coming, or are not publicly available, as outlined in [6]. Many of them rely on
the instrumentation of the JVM, however, such instrumentation requires sub-
stantial effort and must be reimplemented for different JVMs. In contrast to
that, ByCounter it works by instrumenting the application bytecode instead
of instrumenting the JVM, making the resulting approach truly portable while
neither altering the signatures of instrumented classes nor requiring wrap-
pers. To make performance characterisation through bytecode counts more
precise, runtime parameters of some bytecode instructions must be considered,
as they can have significant impact on their performance [1]. For these cases,
ByCounter provides basic parameter recording (e.g. for the array-creating
instructions), and it also offers extension hooks for the recording mechanism.

This manual is structured as follows: Sec. 2 explains how to obtain By-
Counter while Sec. 3 describes the structure of the project. Sec. 4 gives an
overview of tool’s architecture, while Sec. 5 explains how to execute By-
Counter examples and tests. Sec. 6 lists and explains limitations of the
current version of ByCounter. The manual concludes with a listing of used
libraries in Sec. 7.

2 Obtaining ByCounter

To obtain ByCounter, please contact Michael Kuperberg for information
(Email: michael.kuperberg@kit.edu). If you are a member of the Palladio
research group, you can obtain the current ByCounter release from the
SVN repository.

For trouble-free development with ByCounter, we recommend version 3.5
of Eclipse for Java Developers, Eclipse for Java EE or Eclipse Classic to avoid
the possibility of conflicts with the ASM library that is included in some
Eclipse packages. Important note: the compiler settings in Eclipse should
be left to default (which is “checked”) for the following compilation settings
(Windows → Preferences → Java → Compiler) which describe the contents of
compiled class files: adding variable attributes, adding line number attributes,
and adding source file names (s. Screenshot). Also check that the project-
specific settings (Project → Properties → Java Compiler) do not differ from
this. In Eclipse 3.5, “1.6” (aka version 50, see
http://en.wikipedia.org/wiki/Class_%28file_format%29 for details) is

2

mailto:michael.kuperberg@kit.edu
https://svnserver.informatik.kit.edu/i43/svn/code/Palladio.ByCounter/trunk/de.uka.ipd.sdq.ByCounter


ByCounter Guide (Kuperberg, Krogmann)

Fig. 1. Bytecode instrumentation and instruction counting using ByCounter

the default classfile version to which Java classes are compiled. When changing
this to “1.5” (aka Java 5), Eclipse displays a warning that the Javassist library
contains classes with version 50. This seems to be a false positive, under
investigation by Javassist authors and us.

3 Description of file structure

• /bin : compiled ByCounter classes

• /bin instrumented : instrumented classfiles written by ByCounter on
request

• /ByCounter logged counting results : the location of textual counting
logs written when ByCounter is run in collectorless mode (see below)

• /doc : a small entry-level manual, as well as the location for generated
Javadoc HTML files

• /lib : libraries (both end-user requirements and developer dependencies,
see Section 7

• /src : source files

4 ByCounter Architecture

In Figure 2, the data flow in ByCounter is detailed (for overall ByCounter
architecture, see [6]).

3



ByCounter Guide (Kuperberg, Krogmann)

Input class file
(→ byte[])

1. ByCounter

Instrumented class 
file (→ byte[]) Use JVM 

classloader

2. Use Javassist
classloader

3. JVM (execute 
instr. Bytecode)

4. Singleton
Counting-

ResultsCollector

Log file with 
counting results

Counting-
Result

5. CsvWriter

GraphFileWriter(experimental)
CountingMonitor

(experimental)
Eclipse Plugin

(aggregated)
CSV file

(aggregated) JPG 
or PDF file

serialized object

Legend:
main control flow
optional control flow
prototypical c. flow

data

work

data for exchange

d

w

d

Three options:
using Java Agent API, or

using Java Reflection API, or
directly using ClassLoader

Fig. 2. Bytecode instrumentation and instruction counting using ByCounter

5 Examples and Running ByCounter

The class ByCounterExample in package de.uka.ipd.sdq.ByCounter.example
can be executed directly. It instruments itself and runs the instrumented ver-
sion, printing the counting results to standard out (i.e. to the console). The
implementation of the class is documented so that the class can be used as
an entry example. Further examples can be found in the test subpackage.
Both examples and test cases should be run with JVM parameters
set to increase memory bounds, e.g. -Xmx512M -Xss1M. Note that By-
Counter creates a significant number of CSV files in the root project directory
during test runs.

The Swing dialogue window that pops up when instrumentation (step) is
failing is to be reworked soon; it is meant to accentuate the failure which
otherwise gets easily lost in the console logging output. For logging, log4j was
discarded in favor of Java platform API’s logging facilities because log4j is

4



ByCounter Guide (Kuperberg, Krogmann)

known to cause problems with bytecode instrumentation.

6 Limitations of ByCounter

The current version of ByCounter has troubles instrumenting classes in the
default package (i.e. no containing package). Therefore make sure to have
classes that have to be instrumented in packages until this issue is resolved

7 Description of Libraries

The following libraries, listed in alphabetical order, are found in the /lib

directory of ByCounter. The JARs in bold are required, the others are
needed for experimental purposes (and are partially not included in the ZIP
file on BSCW).

• ant.jar (Ant is a standard plugin in Eclipse, but the ant.jar may be needed
in other environments to compile the ByLoader.jar “JVM instrumentation
agent”)

• ant-launcher.jar

• asm-all-3.3.jar 1 , needed by end users and for building

• ByLoader.jar: GUI/“instrumentation JVM agent” that wraps ByCounter,
self-created (build.xml in loader package)

• commons-math-1.1.jar 2 needed for mathematical evaluations

• derby.jar

• gnujaxp.jar 3 Needed for classpath/classloading operations

• itext-2.1.7.jar 4 needed for creating charts as PDF files

• janino.jar

• javac.jar

• javassist.jar 5 needed for Javassist-based classloading

• jcommon-1.0.10.jar 6

• jfreechart-1.0.13.jar 7 , needed for displaying charts summarising counting
results

• jfreechart-1.0.13-experimental.jar

• jfreechart-1.0.13-swt.jar

1 http://asm.objectweb.org/
2 http://commons.apache.org/math/
3 http://www.gnu.org/software/classpath/
4 http://www.jfree.org/jfreechart/
5 http://javassist.org/, currently using version 3.8
6 http://jcommons.sourceforge.net/
7 http://www.jfree.org/jfreechart/

5



ByCounter Guide (Kuperberg, Krogmann)

• junit-4.4.jar Needed to run the tests, e.g. outside of Eclipse(JUnit is a
standard plugin)

• ocutil-2.5.1.jar

• servlet.jar

• swtgraphics2d.jar

• Tidy.jar

References

[1] M. Kuperberg and S. Becker, “Predicting Software Component Performance:
On the Relevance of Parameters for Benchmarking Bytecode and APIs,”
in Proceedings of the 12th International Workshop on Component Oriented
Programming (WCOP 2007), R. Reussner, C. Czyperski, and W. Weck, Eds.,
July 2007. [Online]. Available: http://sdqweb.ipd.uka.de/publications/pdfs/
kuperberg2007a.pdf

[2] M. Kuperberg, K. Krogmann, and R. Reussner, “Performance Prediction for
Black-Box Components using Reengineered Parametric Behaviour Models,”
in Proceedings of the 11th International Symposium on Component Based
Software Engineering (CBSE 2008), Karlsruhe, Germany, 14th-17th October
2008, vol. 5282, October 2008, pp. 48–63. [Online]. Available: http:
//sdqweb.ipd.uka.de/publications/pdfs/kuperberg2008c.pdf

[3] M. Hauck, M. Kuperberg, K. Krogmann, and R. Reussner, “Modelling
Layered Component Execution Environments for Performance Prediction,” in
Proceedings of the 12th International Symposium on Component Based Software
Engineering (CBSE 2009), ser. LNCS, no. 5582. Springer, 2009, pp. 191–208.
[Online]. Available: http://www.comparch-events.org/pages/present.html

[4] B. Dufour, K. Driesen, L. Hendren, and C. Verbrugge, “Dynamic Metrics
for Java,” in OOPSLA ’03: Proceedings of the 18th annual ACM SIGPLAN
conference on Object-oriented programing, systems, languages, and applications.
New York, NY, USA: ACM, 2003, pp. 149–168.

[5] W. Binder and J. Hulaas, “Using Bytecode Instruction Counting as Portable
CPU Consumption Metric,” Electr. Notes Theor. Comput. Sci., vol. 153, no. 2,
pp. 57–77, 2006.

[6] M. Kuperberg, M. Krogmann, and R. Reussner, “ByCounter: Portable Runtime
Counting of Bytecode Instructions and Method Invocations,” in Proceedings of
the 3rd International Workshop on Bytecode Semantics, Verification, Analysis
and Transformation, Budapest, Hungary, 5th April 2008 (ETAPS 2008, 11th
European Joint Conferences on Theory and Practice of Software), 2008. [Online].
Available: http://sdqweb.ipd.uka.de/publications/pdfs/kuperberg2008a.pdf

6

http://sdqweb.ipd.uka.de/publications/pdfs/kuperberg2007a.pdf
http://sdqweb.ipd.uka.de/publications/pdfs/kuperberg2007a.pdf
http://sdqweb.ipd.uka.de/publications/pdfs/kuperberg2008c.pdf
http://sdqweb.ipd.uka.de/publications/pdfs/kuperberg2008c.pdf
http://www.comparch-events.org/pages/present.html
http://sdqweb.ipd.uka.de/publications/pdfs/kuperberg2008a.pdf

	Introduction
	Obtaining ByCounter
	Description of file structure
	ByCounter Architecture
	Examples and Running ByCounter
	Limitations of ByCounter
	Description of Libraries
	References

