1 | package de.uka.ipd.sdq.reliability.solver.pcm2markov; |
2 | |
3 | import java.util.ArrayList; |
4 | import java.util.List; |
5 | |
6 | import org.apache.log4j.Logger; |
7 | import org.eclipse.emf.common.util.EList; |
8 | |
9 | import de.uka.ipd.sdq.markov.MarkovChain; |
10 | import de.uka.ipd.sdq.markov.State; |
11 | import de.uka.ipd.sdq.markov.StateType; |
12 | import de.uka.ipd.sdq.pcm.seff.ResourceDemandingSEFF; |
13 | import de.uka.ipd.sdq.pcm.seff.ServiceEffectSpecification; |
14 | import de.uka.ipd.sdq.pcm.usagemodel.AbstractUserAction; |
15 | import de.uka.ipd.sdq.pcm.usagemodel.Branch; |
16 | import de.uka.ipd.sdq.pcm.usagemodel.BranchTransition; |
17 | import de.uka.ipd.sdq.pcm.usagemodel.Delay; |
18 | import de.uka.ipd.sdq.pcm.usagemodel.EntryLevelSystemCall; |
19 | import de.uka.ipd.sdq.pcm.usagemodel.Loop; |
20 | import de.uka.ipd.sdq.pcm.usagemodel.ScenarioBehaviour; |
21 | import de.uka.ipd.sdq.pcm.usagemodel.Start; |
22 | import de.uka.ipd.sdq.pcm.usagemodel.Stop; |
23 | import de.uka.ipd.sdq.pcm.usagemodel.util.UsagemodelSwitch; |
24 | import de.uka.ipd.sdq.pcmsolver.transformations.ContextWrapper; |
25 | import de.uka.ipd.sdq.pcmsolver.visitors.EMFQueryHelper; |
26 | import de.uka.ipd.sdq.probfunction.math.ManagedPMF; |
27 | import de.uka.ipd.sdq.reliability.core.MarkovEvaluationType; |
28 | |
29 | /** |
30 | * This class represents a visitor for a UsageModel within a PCM instance. The |
31 | * visitor is used in the transformation from PCM with solved dependencies into |
32 | * a Markov Chain Model for reliability prediction. |
33 | * |
34 | * @author brosch |
35 | * |
36 | */ |
37 | public class MarkovUsageModelVisitor extends UsagemodelSwitch<MarkovChain> { |
38 | |
39 | /** |
40 | * A logger to give detailed information about the PCM instance traversal. |
41 | */ |
42 | private static Logger logger = Logger |
43 | .getLogger(MarkovUsageModelVisitor.class.getName()); |
44 | |
45 | /** |
46 | * The ContextWrapper provides easy access to the decorations of the solved |
47 | * PCM instance. |
48 | */ |
49 | private ContextWrapper contextWrapper = null; |
50 | |
51 | /** |
52 | * The degree of distinction between failure types. |
53 | */ |
54 | private MarkovEvaluationType evaluationType; |
55 | |
56 | /** |
57 | * The Markov Builder is used to create Markov Chain instances. |
58 | */ |
59 | private MarkovBuilder markovBuilder; |
60 | |
61 | /** |
62 | * Indicates if the Markov Chain reduction is performed during the |
63 | * transformation. If so, then the chain as a whole never exists, because |
64 | * during construction, it is already reduced again. |
65 | */ |
66 | private boolean optimize; |
67 | |
68 | /** |
69 | * The prefix list enables unique naming of all Markov states, which in turn |
70 | * allows to search for differences between two chains. |
71 | */ |
72 | private List<String> prefixes; |
73 | |
74 | /** |
75 | * Indicates if the resulting Makov model shall be augmented with tracing |
76 | * information for diagnostic purposes. |
77 | */ |
78 | private boolean recordTraces; |
79 | |
80 | /** |
81 | * Indicates if resource states are handled according to the simpler |
82 | * "always ask" strategy, which may yield less accurate results, but avoids |
83 | * iterating over all possible state combinations. |
84 | */ |
85 | private boolean simplifiedStateHandling; |
86 | |
87 | /** |
88 | * The solved PCM instance that serves as an input for the transformation. |
89 | */ |
90 | private MarkovTransformationSource transformationState; |
91 | |
92 | /** |
93 | * The constructor. |
94 | * |
95 | * @param transformationState |
96 | * the Markov transformation state |
97 | * @param evaluationType |
98 | * the degree of differentiation between failure types |
99 | * @param simplifiedStateHandling |
100 | * controls the handling of physical resource states |
101 | * @param optimize |
102 | * controls if Markov Chain reduction shall be performed during |
103 | * transformation |
104 | * @param recordTraces |
105 | * controls if traces shall be recorded during transformation |
106 | */ |
107 | public MarkovUsageModelVisitor( |
108 | final MarkovTransformationSource transformationState, |
109 | final MarkovEvaluationType evaluationType, |
110 | final boolean simplifiedStateHandling, final boolean optimize, |
111 | final boolean recordTraces) { |
112 | this.evaluationType = evaluationType; |
113 | this.transformationState = transformationState; |
114 | this.simplifiedStateHandling = simplifiedStateHandling; |
115 | this.optimize = optimize; |
116 | this.recordTraces = recordTraces; |
117 | this.prefixes = new ArrayList<String>(); |
118 | this.markovBuilder = new MarkovBuilder(recordTraces); |
119 | } |
120 | |
121 | /** |
122 | * Returns a Markov Chain corresponding to this Branch. |
123 | * |
124 | * @param branch |
125 | * the branch action |
126 | * @return the resulting Markov Chain |
127 | * @see de.uka.ipd.sdq.pcm.usagemodel.util.UsagemodelSwitch#caseBranch(de.uka.ipd.sdq.pcm.usagemodel.Branch) |
128 | */ |
129 | @Override |
130 | public MarkovChain caseBranch(Branch branch) { |
131 | |
132 | // Logging & naming: |
133 | String name = branch.getEntityName() + "[" + branch.getId() + "]"; |
134 | prefixes.add(name); |
135 | logger.debug("Visit Branch: " + name); |
136 | |
137 | // Determine the branch probabilities and the inner Markov chains |
138 | // associated with the branch behaviors: |
139 | ArrayList<MarkovChain> specificMarkovChains = new ArrayList<MarkovChain>(); |
140 | ArrayList<Double> branchProbabilities = new ArrayList<Double>(); |
141 | EList<BranchTransition> transitions = branch |
142 | .getBranchTransitions_Branch(); |
143 | for (int i = 0; i < transitions.size(); i++) { |
144 | if (transitions.get(i).getBranchProbability() <= 0.0) { |
145 | continue; |
146 | } |
147 | branchProbabilities.add(transitions.get(i).getBranchProbability()); |
148 | specificMarkovChains.add((MarkovChain) doSwitch(transitions.get(i) |
149 | .getBranchedBehaviour_BranchTransition())); |
150 | } |
151 | |
152 | // Initialize the aggregate Markov chain representing the branch: |
153 | MarkovChain aggregateMarkovChain = markovBuilder.initBranchMarkovChain( |
154 | prefixes, branchProbabilities); |
155 | |
156 | // Incorporate the specific Markov chains into the aggregate one: |
157 | ArrayList<State> statesToReplace = new ArrayList<State>(); |
158 | for (int i = 0; i < aggregateMarkovChain.getStates().size(); i++) { |
159 | if (aggregateMarkovChain.getStates().get(i).getType().equals( |
160 | StateType.DEFAULT)) { |
161 | statesToReplace.add(aggregateMarkovChain.getStates().get(i)); |
162 | } |
163 | } |
164 | for (int i = 0; i < statesToReplace.size(); i++) { |
165 | markovBuilder.incorporateMarkovChain(aggregateMarkovChain, |
166 | specificMarkovChains.get(i), statesToReplace.get(i), |
167 | optimize, false); |
168 | } |
169 | |
170 | // Naming: |
171 | prefixes.remove(prefixes.size() - 1); |
172 | |
173 | // Return the result: |
174 | return aggregateMarkovChain; |
175 | } |
176 | |
177 | /** |
178 | * Returns a Markov Chain correponding to this Delay. |
179 | * |
180 | * @param delay |
181 | * the delay action |
182 | * @return the resulting Markov Chain |
183 | */ |
184 | @Override |
185 | public MarkovChain caseDelay(final Delay delay) { |
186 | |
187 | // Do the logging: |
188 | String name = delay.getEntityName() + "[" + delay.getId() + "]"; |
189 | prefixes.add(name); |
190 | logger.debug("Visit Delay: " + name); |
191 | |
192 | // Create a Markov chain for the Delay action: |
193 | MarkovChain resultChain = markovBuilder.initBasicMarkovChain(prefixes); |
194 | |
195 | // Naming: |
196 | prefixes.remove(prefixes.size() - 1); |
197 | |
198 | // Return the result: |
199 | return resultChain; |
200 | } |
201 | |
202 | /** |
203 | * |
204 | * Returns a Markov Chain that corresponds to this EntryLevelSystemCall. |
205 | * |
206 | * @param call |
207 | * the call |
208 | * @return the resulting Markov Chain |
209 | */ |
210 | @Override |
211 | public MarkovChain caseEntryLevelSystemCall(final EntryLevelSystemCall call) { |
212 | |
213 | // Logging & naming: |
214 | String name = call.getEntityName() + "[" + call.getId() + "]"; |
215 | prefixes.add(name); |
216 | logger.debug("Visit EntryLevelSystemCall: " + name); |
217 | |
218 | // Get List of ContextWrappers, one for each called component instance |
219 | List<ContextWrapper> contextWrapperList; |
220 | // Create a new context wrapper for this entry level system call: |
221 | if (contextWrapper == null) { |
222 | contextWrapperList = ContextWrapper.getContextWrapperFor(call, |
223 | transformationState.getModel()); |
224 | } else { |
225 | contextWrapperList = contextWrapper.getContextWrapperFor(call); |
226 | } |
227 | |
228 | // FIXME: The Reliability solver does not support replication yet |
229 | if (contextWrapperList.size() > 1) { |
230 | logger |
231 | .error("The Reliability solver only supports one AllocationContext per AssemblyContext. Picking one of the called Allocation contexts for call " |
232 | + call.getEntityName() |
233 | + " " |
234 | + call.getId() |
235 | + " ignoring the others. Results will be inaccurate."); |
236 | } else if (contextWrapperList.size() == 0) { |
237 | throw new RuntimeException( |
238 | "Internal Error: Could not create a Context Wrapper for call " |
239 | + call.getEntityName() + " " + call.getId()); |
240 | } |
241 | contextWrapper = contextWrapperList.get(0); |
242 | |
243 | // We need to get from the entryLevelSystemCall to the RDSEFF that |
244 | // fulfills the call: |
245 | ServiceEffectSpecification seff = contextWrapper.getNextSEFF(call); |
246 | MarkovChain resultChain = null; |
247 | if (seff != null) { |
248 | MarkovSeffVisitor seffVisitor = new MarkovSeffVisitor( |
249 | transformationState, contextWrapper, prefixes, |
250 | evaluationType, simplifiedStateHandling, optimize, |
251 | recordTraces); |
252 | resultChain = seffVisitor.doSwitch((ResourceDemandingSEFF) seff); |
253 | } |
254 | |
255 | // Naming: |
256 | prefixes.remove(prefixes.size() - 1); |
257 | |
258 | // Return the result: |
259 | return resultChain; |
260 | } |
261 | |
262 | /** |
263 | * Returns a Markov Chain corresponding to this Loop. |
264 | * |
265 | * @param loop |
266 | * the loop action |
267 | * @return the resulting Markov Chain |
268 | */ |
269 | @Override |
270 | public MarkovChain caseLoop(final Loop loop) { |
271 | |
272 | // Logging & naming: |
273 | String name = loop.getEntityName() + "[" + loop.getId() + "]"; |
274 | prefixes.add(name); |
275 | logger.debug("Visit Loop: " + name); |
276 | |
277 | // Get the solved loop probability mass function: |
278 | String specification = loop.getLoopIteration_Loop().getSpecification(); |
279 | ManagedPMF pmf; |
280 | try { |
281 | pmf = ManagedPMF.createFromString(specification); |
282 | } catch (Exception e) { |
283 | logger.error("Could not create a ManagedPMF from string \"" |
284 | + specification + "\""); |
285 | return null; |
286 | } |
287 | |
288 | // Determine the inner Markov Chain associated with the loop behavior: |
289 | ArrayList<String> prefixesCopy = new ArrayList<String>(); |
290 | prefixesCopy.addAll(prefixes); |
291 | prefixes.clear(); |
292 | MarkovChain specificMarkovChain = (MarkovChain) doSwitch(loop |
293 | .getBodyBehaviour_Loop()); |
294 | prefixes.addAll(prefixesCopy); |
295 | |
296 | // Initialize the aggregate Markov Chain representing the loop: |
297 | MarkovChain aggregateMarkovChain = markovBuilder.initLoopMarkovChain( |
298 | prefixes, pmf); |
299 | |
300 | // Incorporate the specific MarkovChain into the aggregate one: |
301 | ArrayList<State> statesToReplace = new ArrayList<State>(); |
302 | for (int i = 0; i < aggregateMarkovChain.getStates().size(); i++) { |
303 | if (aggregateMarkovChain.getStates().get(i).getType().equals( |
304 | StateType.DEFAULT)) { |
305 | statesToReplace.add(aggregateMarkovChain.getStates().get(i)); |
306 | } |
307 | } |
308 | for (int i = 0; i < statesToReplace.size(); i++) { |
309 | markovBuilder |
310 | .incorporateMarkovChain(aggregateMarkovChain, |
311 | specificMarkovChain, statesToReplace.get(i), |
312 | optimize, true); |
313 | } |
314 | |
315 | // Naming: |
316 | prefixes.remove(prefixes.size() - 1); |
317 | |
318 | // Return the result: |
319 | return aggregateMarkovChain; |
320 | } |
321 | |
322 | /** |
323 | * Returns a Markov Chain that corresponds to the first SystemLevelEntryCall |
324 | * within this ScenarioBehaviour. |
325 | * |
326 | * @param scenarioBehaviour |
327 | * the scenario behaviour |
328 | * @return the resulting Markov Chain |
329 | */ |
330 | @Override |
331 | public MarkovChain caseScenarioBehaviour( |
332 | final ScenarioBehaviour scenarioBehaviour) { |
333 | |
334 | // Logging & naming: |
335 | String name = scenarioBehaviour.getEntityName() + "[" |
336 | + scenarioBehaviour.getId() + "]"; |
337 | prefixes.add(name); |
338 | logger.debug("Visit Scenario Behaviour: " + name); |
339 | |
340 | // Go through the chain of actions that constitute this behavior. Each |
341 | // action is expected to create its own specific Markov Chain: |
342 | ArrayList<AbstractUserAction> actions = new ArrayList<AbstractUserAction>(); |
343 | ArrayList<String> actionNames = new ArrayList<String>(); |
344 | ArrayList<MarkovChain> chains = new ArrayList<MarkovChain>(); |
345 | AbstractUserAction action = (Start) EMFQueryHelper.getObjectByType( |
346 | scenarioBehaviour.getActions_ScenarioBehaviour(), Start.class); |
347 | while (action != null) { |
348 | actions.add(action); |
349 | actionNames |
350 | .add(action.getEntityName() + "[" + action.getId() + "]"); |
351 | MarkovChain specificMarkovChain = (MarkovChain) doSwitch(action); |
352 | chains.add(specificMarkovChain); |
353 | action = action.getSuccessor(); |
354 | } |
355 | |
356 | // Initialize a new aggregate Markov Chain that has one state for each |
357 | // action of the action chain: |
358 | ArrayList<State> states = new ArrayList<State>(); |
359 | MarkovChain aggregateMarkovChain = markovBuilder |
360 | .initSequentialMarkovChain(prefixes, actionNames, states); |
361 | |
362 | // Incorporate the specific Chains into the aggregate Chain: |
363 | for (int i = 0; i < actions.size(); i++) { |
364 | markovBuilder.incorporateMarkovChain(aggregateMarkovChain, chains |
365 | .get(i), states.get(i), optimize, false); |
366 | } |
367 | |
368 | // Naming: |
369 | prefixes.remove(prefixes.size() - 1); |
370 | |
371 | // Return the resulting Markov Chain: |
372 | return aggregateMarkovChain; |
373 | } |
374 | |
375 | /** |
376 | * Returns a Markov Chain that corresponds to this start action. |
377 | * |
378 | * @param start |
379 | * the start action |
380 | * @return the resulting Markov Chain |
381 | */ |
382 | @Override |
383 | public MarkovChain caseStart(final Start start) { |
384 | |
385 | // Do the logging: |
386 | String name = start.getEntityName() + "[" + start.getId() + "]"; |
387 | prefixes.add(name); |
388 | logger.debug("Visit Start: " + name); |
389 | |
390 | // Create a Markov Chain for the Start action: |
391 | MarkovChain resultChain = markovBuilder.initBasicMarkovChain(prefixes); |
392 | |
393 | // Naming: |
394 | prefixes.remove(prefixes.size() - 1); |
395 | |
396 | // Return the result: |
397 | return resultChain; |
398 | } |
399 | |
400 | /** |
401 | * Returns a Markov Chain that corresponds to this stop action. |
402 | * |
403 | * @param stop |
404 | * the stop action |
405 | * @return the resulting Markov Chain |
406 | */ |
407 | @Override |
408 | public MarkovChain caseStop(final Stop stop) { |
409 | |
410 | // Logging & Naming: |
411 | String name = stop.getEntityName() + "[" + stop.getId() + "]"; |
412 | logger.debug("Visit Stop: " + name); |
413 | prefixes.add(name); |
414 | |
415 | // Create a Markov chain for the Stop action: |
416 | MarkovChain resultChain = markovBuilder.initBasicMarkovChain(prefixes); |
417 | |
418 | // Naming: |
419 | prefixes.remove(prefixes.size() - 1); |
420 | |
421 | // Return the result: |
422 | return resultChain; |
423 | } |
424 | } |