| 1 | package de.uka.ipd.sdq.reliability.solver.sensitivity; |
| 2 | |
| 3 | import java.util.ArrayList; |
| 4 | import java.util.List; |
| 5 | |
| 6 | import de.uka.ipd.sdq.pcmsolver.models.PCMInstance; |
| 7 | |
| 8 | /** |
| 9 | * Provides a possibility to define multiple sensitivity parameters to be |
| 10 | * defined within one sensitivity analysis. |
| 11 | * |
| 12 | * @author brosch |
| 13 | * |
| 14 | */ |
| 15 | public class MultiSensitivity extends MarkovSensitivity { |
| 16 | |
| 17 | /** |
| 18 | * Determines if all combinations of parameter values shall be examined. |
| 19 | */ |
| 20 | private boolean isCombinatory; |
| 21 | |
| 22 | /** |
| 23 | * List of sensitivity parameters. |
| 24 | */ |
| 25 | public List<MarkovSensitivity> sensitivityParameters; |
| 26 | |
| 27 | /** |
| 28 | * The constructor. |
| 29 | * |
| 30 | * @param name |
| 31 | * name of the sensitivity analysis |
| 32 | * @param sensitivityParameters |
| 33 | * list of sensitivity parameters |
| 34 | * @param isCombinatory |
| 35 | * indicates if all combinations of sensitivity parameters shall |
| 36 | * be examined |
| 37 | */ |
| 38 | public MultiSensitivity(final String name, |
| 39 | final List<MarkovSensitivity> sensitivityParameters, |
| 40 | final boolean isCombinatory) { |
| 41 | |
| 42 | // Initialize basic variables: |
| 43 | super(name, null); |
| 44 | |
| 45 | // Further initializations: |
| 46 | this.sensitivityParameters = sensitivityParameters; |
| 47 | this.isCombinatory = isCombinatory; |
| 48 | |
| 49 | // Determine the overall number of sensibility steps: |
| 50 | determineNumberOfSteps(); |
| 51 | } |
| 52 | |
| 53 | /** |
| 54 | * Alters the model according to the next sensitivity analysis step. |
| 55 | * |
| 56 | * @return indicates if the model could be successfully altered |
| 57 | */ |
| 58 | protected boolean alterModel() { |
| 59 | |
| 60 | // Control the model alteration proceeds as required: |
| 61 | boolean modelAltered = false; |
| 62 | |
| 63 | // In the non-combinatory case, let each sensitivity parameter alter the |
| 64 | // model: |
| 65 | if (!isCombinatory) { |
| 66 | for (MarkovSensitivity sensitivity : sensitivityParameters) { |
| 67 | if (sensitivity.alterModel() == true) { |
| 68 | modelAltered = true; |
| 69 | } |
| 70 | } |
| 71 | } |
| 72 | |
| 73 | // In the combinatory case, increase the overall step counter over all |
| 74 | // sensitivity parameters: |
| 75 | if (isCombinatory && (sensitivityParameters.size() > 0)) { |
| 76 | for (MarkovSensitivity sensitivity : sensitivityParameters) { |
| 77 | if (sensitivity.alterModel() == true) { |
| 78 | modelAltered = true; |
| 79 | } |
| 80 | } |
| 81 | } |
| 82 | |
| 83 | // Everything ok: |
| 84 | return modelAltered; |
| 85 | } |
| 86 | |
| 87 | /** |
| 88 | * Determines the overall number of sensitivity analysis steps. |
| 89 | */ |
| 90 | private void determineNumberOfSteps() { |
| 91 | numberOfSteps = (isCombinatory) ? 1 : 0; |
| 92 | for (MarkovSensitivity sensitivity : sensitivityParameters) { |
| 93 | if (!isCombinatory) { |
| 94 | if (sensitivity.numberOfSteps > numberOfSteps) { |
| 95 | numberOfSteps = sensitivity.numberOfSteps; |
| 96 | } |
| 97 | } else { |
| 98 | numberOfSteps *= sensitivity.numberOfSteps; |
| 99 | } |
| 100 | } |
| 101 | } |
| 102 | |
| 103 | /** |
| 104 | * Extracts the relevant sensitivity information from the given model. |
| 105 | */ |
| 106 | protected void extractSensitivityInformation() { |
| 107 | // Nothing to do in the MultiSensitivity. |
| 108 | } |
| 109 | |
| 110 | /** |
| 111 | * Retrieves the current step number. |
| 112 | * |
| 113 | * @return the current step number |
| 114 | */ |
| 115 | protected int getCurrentStepNumber() { |
| 116 | if (isCombinatory) { |
| 117 | int stepNumber = 1; |
| 118 | for (int i = 0; i < sensitivityParameters.size(); i++) { |
| 119 | int step = sensitivityParameters.get(i).getCurrentStepNumber(); |
| 120 | if (step == 0) { |
| 121 | return 0; |
| 122 | } |
| 123 | int weight = 1; |
| 124 | for (int j = i + 1; j < sensitivityParameters.size(); j++) { |
| 125 | weight *= sensitivityParameters.get(j).numberOfSteps; |
| 126 | } |
| 127 | stepNumber += weight * (step - 1); |
| 128 | } |
| 129 | return stepNumber; |
| 130 | } else { |
| 131 | int stepNumber = 0; |
| 132 | for (MarkovSensitivity sensitivity : sensitivityParameters) { |
| 133 | stepNumber = Math.max(stepNumber, sensitivity |
| 134 | .getCurrentStepNumber()); |
| 135 | } |
| 136 | return stepNumber; |
| 137 | } |
| 138 | } |
| 139 | |
| 140 | /** |
| 141 | * Builds the headings strings for logging. |
| 142 | * |
| 143 | * @return the log headings strings |
| 144 | */ |
| 145 | protected List<List<String>> getLogHeadingsMulti() { |
| 146 | |
| 147 | // Create a result list: |
| 148 | List<List<String>> resultList = new ArrayList<List<String>>(); |
| 149 | |
| 150 | // Build the lines of the result list: |
| 151 | ArrayList<String> newHeadings = new ArrayList<String>(); |
| 152 | ArrayList<List<List<String>>> existingHeadings = new ArrayList<List<List<String>>>(); |
| 153 | for (MarkovSensitivity sensitivity : sensitivityParameters) { |
| 154 | existingHeadings.add(sensitivity.getLogHeadingsMulti()); |
| 155 | } |
| 156 | resultList.add(newHeadings); |
| 157 | for (int i = 0; i < getMaxNumberOfLines(existingHeadings); i++) { |
| 158 | resultList.add(new ArrayList<String>()); |
| 159 | } |
| 160 | |
| 161 | // Fill the lines of the result list: |
| 162 | for (int i = 0; i < existingHeadings.size(); i++) { |
| 163 | int numberOfColums = 0; |
| 164 | for (int j = 0; j < existingHeadings.get(i).size(); j++) { |
| 165 | numberOfColums = existingHeadings.get(i).get(j).size(); |
| 166 | int resultIndex = resultList.size() |
| 167 | - existingHeadings.get(i).size() + j; |
| 168 | resultList.get(resultIndex).addAll( |
| 169 | existingHeadings.get(i).get(j)); |
| 170 | } |
| 171 | newHeadings.add(sensitivityParameters.get(i).name); |
| 172 | for (int j = 0; j < resultList.size() |
| 173 | - existingHeadings.get(i).size(); j++) { |
| 174 | for (int k = ((j == 0) ? 1 : 0); k < numberOfColums; k++) { |
| 175 | resultList.get(j).add(""); |
| 176 | } |
| 177 | } |
| 178 | } |
| 179 | |
| 180 | // Return the result: |
| 181 | return resultList; |
| 182 | } |
| 183 | |
| 184 | /** |
| 185 | * Builds the results strings for sensitivity logging. |
| 186 | * |
| 187 | * @return the results strings |
| 188 | */ |
| 189 | protected List<String> getLogSingleResultsMulti() { |
| 190 | |
| 191 | // Create a result list: |
| 192 | List<String> resultList = new ArrayList<String>(); |
| 193 | |
| 194 | // Create the result strings: |
| 195 | for (MarkovSensitivity sensitivity : sensitivityParameters) { |
| 196 | resultList.addAll(sensitivity.getLogSingleResultsMulti()); |
| 197 | } |
| 198 | |
| 199 | // Return the result: |
| 200 | return resultList; |
| 201 | } |
| 202 | |
| 203 | /** |
| 204 | * Determines the number of lines in the given list of log headings. |
| 205 | * |
| 206 | * @param logHeadingsList |
| 207 | * the list of log headings |
| 208 | * @return the number of lines |
| 209 | */ |
| 210 | private int getMaxNumberOfLines( |
| 211 | ArrayList<List<List<String>>> logHeadingsList) { |
| 212 | int maxNumberOfLines = 0; |
| 213 | for (int i = 0; i < logHeadingsList.size(); i++) { |
| 214 | int numberOfLines = logHeadingsList.get(i).size(); |
| 215 | maxNumberOfLines = Math.max(numberOfLines, maxNumberOfLines); |
| 216 | } |
| 217 | return maxNumberOfLines; |
| 218 | } |
| 219 | |
| 220 | /** |
| 221 | * Retrieves the current step count of a sensitivity parameter. |
| 222 | * |
| 223 | * @param index |
| 224 | * the index of the {@link SensitivityStatus} parameter |
| 225 | * @return the step count |
| 226 | */ |
| 227 | private int getStepCount(final int index) { |
| 228 | MarkovSensitivity sensitivity = sensitivityParameters.get(index); |
| 229 | return sensitivity.getCurrentStepNumber(); |
| 230 | } |
| 231 | |
| 232 | /** |
| 233 | * Increases the current step number. |
| 234 | * |
| 235 | * @return indicates an overflow |
| 236 | */ |
| 237 | protected boolean increaseCurrentStepNumber() { |
| 238 | if (isCombinatory) { |
| 239 | if (sensitivityParameters.size() > 0) { |
| 240 | return increaseStepCountRecursively(0); |
| 241 | } |
| 242 | return true; |
| 243 | } else { |
| 244 | boolean overflow = true; |
| 245 | for (MarkovSensitivity sensitivity : sensitivityParameters) { |
| 246 | if (!sensitivity.increaseCurrentStepNumber()) { |
| 247 | overflow = false; |
| 248 | } |
| 249 | } |
| 250 | return overflow; |
| 251 | } |
| 252 | } |
| 253 | |
| 254 | /** |
| 255 | * Increases the combinatory step count of a sensitivity parameter. |
| 256 | * |
| 257 | * @param index |
| 258 | * the index of sensitivity parameter |
| 259 | * @return true if an overflow happened |
| 260 | */ |
| 261 | private boolean increaseStepCount(final int index) { |
| 262 | MarkovSensitivity sensitivity = sensitivityParameters.get(index); |
| 263 | if (!sensitivity.increaseCurrentStepNumber()) { |
| 264 | for (int i = index + 1; i < sensitivityParameters.size(); i++) { |
| 265 | sensitivityParameters.get(i).resetCurrentStepNumber(); |
| 266 | } |
| 267 | return false; |
| 268 | } |
| 269 | return true; |
| 270 | } |
| 271 | |
| 272 | /** |
| 273 | * Increases the combinatory step count over all sensitivity parameters. |
| 274 | * |
| 275 | * @param index |
| 276 | * the index of the current sensitivity parameter |
| 277 | * @return true if an overflow happened |
| 278 | */ |
| 279 | private boolean increaseStepCountRecursively(final int index) { |
| 280 | |
| 281 | // Check for the cases of the recursion: |
| 282 | if (getStepCount(index) == 0) { |
| 283 | // Initial case, all step counts set to 1: |
| 284 | initStepCountRecusively(index); |
| 285 | return false; |
| 286 | } else if (sensitivityParameters.size() > index + 1) { |
| 287 | // Recursive case, increase counter: |
| 288 | if (increaseStepCountRecursively(index + 1)) { |
| 289 | return increaseStepCount(index); |
| 290 | } |
| 291 | return false; |
| 292 | } else { |
| 293 | // Base case, increase last counter: |
| 294 | return increaseStepCount(index); |
| 295 | } |
| 296 | } |
| 297 | |
| 298 | /** |
| 299 | * Initializes all sensitivity parameter step counts to 1. |
| 300 | * |
| 301 | * @param index |
| 302 | * the index of the current sensitivity parameter |
| 303 | */ |
| 304 | private void initStepCountRecusively(final int index) { |
| 305 | if (sensitivityParameters.size() > index) { |
| 306 | MarkovSensitivity sensitivity = sensitivityParameters.get(index); |
| 307 | sensitivity.resetCurrentStepNumber(); |
| 308 | initStepCountRecusively(index + 1); |
| 309 | } |
| 310 | } |
| 311 | |
| 312 | /** |
| 313 | * Resets the current step number. |
| 314 | * |
| 315 | */ |
| 316 | protected void resetCurrentStepNumber() { |
| 317 | for (MarkovSensitivity sensitivity : sensitivityParameters) { |
| 318 | sensitivity.resetCurrentStepNumber(); |
| 319 | } |
| 320 | } |
| 321 | |
| 322 | /** |
| 323 | * Sets the PCM instance. |
| 324 | * |
| 325 | * @param model |
| 326 | * the PCM instance |
| 327 | */ |
| 328 | protected void setModel(final PCMInstance model) { |
| 329 | super.setModel(model); |
| 330 | for (MarkovSensitivity sensitivity : sensitivityParameters) { |
| 331 | sensitivity.setModel(model); |
| 332 | } |
| 333 | } |
| 334 | } |