1 | package de.uka.ipd.sdq.sensorframework.visualisation.statistics.views; |
2 | |
3 | import java.util.Collection; |
4 | |
5 | import de.uka.ipd.sdq.sensorframework.entities.Measurement; |
6 | import de.uka.ipd.sdq.sensorframework.entities.Sensor; |
7 | import de.uka.ipd.sdq.sensorframework.entities.SensorAndMeasurements; |
8 | import de.uka.ipd.sdq.sensorframework.entities.TimeSpanMeasurement; |
9 | import de.uka.ipd.sdq.sensorframework.entities.TimeSpanSensor; |
10 | import de.uka.ipd.sdq.sensorframework.visualisation.rvisualisation.views.AbstractHtmlReportView; |
11 | import de.uka.ipd.sdq.statistics.IBatchAlgorithm; |
12 | import de.uka.ipd.sdq.statistics.PhiMixingBatchAlgorithm; |
13 | import de.uka.ipd.sdq.statistics.StaticBatchAlgorithm; |
14 | import de.uka.ipd.sdq.statistics.estimation.ConfidenceInterval; |
15 | import de.uka.ipd.sdq.statistics.estimation.SampleMeanEstimator; |
16 | import de.uka.ipd.sdq.statistics.independence.RunUpTest; |
17 | |
18 | /** |
19 | * Report that calls {@link PhiMixingBatchAlgorithm} to determine the confidence intervals, |
20 | * also considering independence of the observations. The {@link RunUpTest} is used |
21 | * as the default to test the data sequence for independence. |
22 | * @author martens |
23 | * @see PhiMixingBatchAlgorithm |
24 | * @see RunUpTest |
25 | */ |
26 | public class ConfidenceIntervalsHtmlReportView extends AbstractHtmlReportView { |
27 | |
28 | @Override |
29 | public void setInput(Collection<SensorAndMeasurements> c) { |
30 | |
31 | |
32 | int batcheSize = 100; |
33 | |
34 | if (c.isEmpty()) { |
35 | browser.setText("<html><body><h1>Error! </h1>At least " |
36 | + "the measurements for one sensor must be " |
37 | + "available!</body></html>"); |
38 | } else { |
39 | String browserText = "<html><body><h1>Confidence intervals for mean values of sensors</h1>"; |
40 | |
41 | // TODO: make alpha configurable. |
42 | double alpha = 0.9; |
43 | |
44 | |
45 | for (SensorAndMeasurements sensorAndMeasurements : c) { |
46 | Sensor sensor = sensorAndMeasurements.getSensor(); |
47 | if (sensor instanceof TimeSpanSensor){ |
48 | PhiMixingBatchAlgorithm statisticChecker = new PhiMixingBatchAlgorithm(); |
49 | |
50 | for (Measurement m : sensorAndMeasurements.getMeasurements()) { |
51 | TimeSpanMeasurement t = (TimeSpanMeasurement)m; |
52 | statisticChecker.offerSample(t.getTimeSpan()); |
53 | } |
54 | browserText += "<h2>Sensor "+sensor.getSensorName()+"</h2>"; |
55 | browserText += "<p>Number of observations: "+sensorAndMeasurements.getMeasurements().size()+"<br>"; |
56 | |
57 | browserText += "<h3>Results of PhiMixingBatchAlgorithm</h3>"; |
58 | browserText = evaluateBatchAlgorithm(browserText, alpha, |
59 | sensorAndMeasurements, statisticChecker); |
60 | |
61 | |
62 | StaticBatchAlgorithm staticStatisticChecker = new StaticBatchAlgorithm(batcheSize,0); |
63 | |
64 | for (Measurement m : sensorAndMeasurements.getMeasurements()) { |
65 | TimeSpanMeasurement t = (TimeSpanMeasurement)m; |
66 | staticStatisticChecker.offerSample(t.getTimeSpan()); |
67 | } |
68 | |
69 | browserText += "<h3>Results of Plain Batch Means Algorithm (batch size "+batcheSize+")</h3>"; |
70 | browserText = evaluateBatchAlgorithm(browserText, alpha, |
71 | sensorAndMeasurements, staticStatisticChecker); |
72 | |
73 | /*better not use this as it will load all results of this sensor in memory. |
74 | StaticBatchAlgorithm singleStatisticChecker = new StaticBatchAlgorithm(1,0); |
75 | |
76 | for (Measurement m : sensorAndMeasurements.getMeasurements()) { |
77 | TimeSpanMeasurement t = (TimeSpanMeasurement)m; |
78 | singleStatisticChecker.offerSample(t.getTimeSpan()); |
79 | } |
80 | |
81 | |
82 | * browserText += "<h3>Results of Plain Confidence Interval Analysis on Single Samples</h3>"; |
83 | browserText = evaluateBatchAlgorithm(browserText, alpha, |
84 | sensorAndMeasurements, statisticChecker);*/ |
85 | |
86 | } |
87 | } |
88 | browserText += "<h2>Explanations</h2>" + |
89 | "<h3>PhiMixingBatchAlgorithm</h3><small><p>Implements a batch means procedure based on phi-mixing conditions as described in [1]. " + |
90 | "Appropriate batch sizes and the number of batches are determined automatically.</p>" + |
91 | "<p>The procedure utilizes an independence test in order to build a so-called \"quasi " + |
92 | "independent\" (QI) sample sequence. By default the RunUpTest will be used. \"The aim " + |
93 | "of the QI method is to continue the simulation run until we have obtained a pre-specified " + |
94 | "number of essentially independent random samples by skipping highly correlated observations.\" [1] " + |
95 | "As soon as the QI sequence appears to be independent, the computed batches can be considered as valid. " + |
96 | "Samples in the QI sequence are only used to determine appropriate batch sizes. " + |
97 | "They are not used to compute the batch means! Instead, the batch means consist of all samples, " + |
98 | "regardless of statistical dependence.</p>"+ |
99 | "<p>The RunUpTest is implemented as described in [Donald E. Knuth: The Art of Computer Programming. Seminumerical Algorithms].</p>"+ |
100 | "<p>[1] E. Chen, W. Kelton: A Stopping Procedure based on Phi-Mixing Conditions. Proceedings of the 2000 Winter Simulation Conference.</p>" + |
101 | "</small>" + |
102 | "<h3>Simple Batch Means</h3>" + |
103 | "Simply takes batches of size " +batcheSize+" and calculates the confidence interval based on their means. Handle the results with care, as they may not be statistically valid (e.g. as a simulation stopping criterion), because this algorithm does not check the independence of single observations." + |
104 | " In particular, the reported mean itself may deviate because of rounding errors. "+ |
105 | "</body></html>"; |
106 | browser.setText(browserText); |
107 | } |
108 | |
109 | } |
110 | |
111 | private String evaluateBatchAlgorithm(String browserText, double alpha, |
112 | SensorAndMeasurements sensorAndMeasurements, |
113 | IBatchAlgorithm statisticChecker) { |
114 | ConfidenceInterval ci = null; |
115 | if (statisticChecker.hasValidBatches()){ |
116 | ci = new SampleMeanEstimator().estimateConfidence(statisticChecker.getBatchMeans(),alpha); |
117 | } |
118 | if (ci != null){ |
119 | browserText += "Mean value: "+ci.getMean() +"<br>"+ |
120 | " Confidence value alpha: "+ci.getLevel()+"<br>"+ |
121 | " Upper bound: "+ci.getUpperBound()+"<br>"+ |
122 | " Lower bound: "+ci.getLowerBound()+"<br>"+ |
123 | " </p>"; |
124 | } else { |
125 | // calculate mean manually |
126 | double sum = 0; |
127 | for (Measurement m : sensorAndMeasurements.getMeasurements()) { |
128 | TimeSpanMeasurement t = (TimeSpanMeasurement)m; |
129 | sum += t.getTimeSpan(); |
130 | } |
131 | double mean = sum / sensorAndMeasurements.getMeasurements().size(); |
132 | browserText += "Mean value: "+mean +"</p><p>"; |
133 | |
134 | browserText += "Not enough information to calulate confidence interval: No valid batches could be determined to calculate the confidence interval. Maybe warmup effects influence the results.</p>"; |
135 | } |
136 | return browserText; |
137 | } |
138 | |
139 | |
140 | |
141 | } |