1 | package de.uka.ipd.sdq.probfunction.math.util; |
2 | |
3 | import java.math.BigDecimal; |
4 | import java.math.BigInteger; |
5 | import java.util.ArrayList; |
6 | import java.util.Comparator; |
7 | import java.util.HashMap; |
8 | import java.util.List; |
9 | |
10 | import de.uka.ipd.sdq.probfunction.BoxedPDF; |
11 | import de.uka.ipd.sdq.probfunction.ContinuousSample; |
12 | import de.uka.ipd.sdq.probfunction.math.IBoxedPDF; |
13 | import de.uka.ipd.sdq.probfunction.math.IContinuousSample; |
14 | import de.uka.ipd.sdq.probfunction.math.ISample; |
15 | import flanagan.complex.Complex; |
16 | |
17 | /** |
18 | * MathTools contains a set of commonly used mathematical functions, that are |
19 | * not provided by the Java libraries. |
20 | * |
21 | * @author ihssane, jens |
22 | * |
23 | */ |
24 | public class MathTools { |
25 | |
26 | /** |
27 | * Difference up to which two values are considered as equal. |
28 | */ |
29 | public static final double EPSILON_ERROR = 1e-5; |
30 | |
31 | /** |
32 | * Computes the greatest common divisor (GDC) of a set of numbers. |
33 | * |
34 | * @param numbers |
35 | * List of numbers for which the GDC shall be computed. |
36 | * @return Returns the greatest common divisor of all numbers |
37 | */ |
38 | public static double gcd(List<Double> numbers) { |
39 | if (numbers.size() < 1) |
40 | throw new IllegalArgumentException( |
41 | "number of digit must be greater than 0"); |
42 | if(numbers.size() < 2) |
43 | return numbers.get(0); |
44 | |
45 | double gcd = gcd(numbers.get(0), numbers.get(1)); |
46 | for (int i = 2; i < numbers.size(); i++) |
47 | gcd = gcd(gcd, numbers.get(i)); |
48 | return gcd; |
49 | } |
50 | |
51 | /** |
52 | * Computes something similar to the greatest common |
53 | * divisor (GCD) of two numbers. |
54 | * Note that the GCD for two doubles is calculates, which is |
55 | * different to the standard definition of GCD. |
56 | * |
57 | * @param x |
58 | * first number |
59 | * @param y |
60 | * second number |
61 | * @return Returns the GDC of y and x. |
62 | */ |
63 | public static double gcd(double x, double y) { |
64 | |
65 | if (x == 0.0) |
66 | return y; |
67 | if (y == 0.0) |
68 | return x; |
69 | |
70 | //if one already divides the other almost without remainder, return the smaller one |
71 | if (Math.abs(x%y) < EPSILON_ERROR) return y; |
72 | if (Math.abs(y%x) < EPSILON_ERROR) return x; |
73 | |
74 | while (Math.abs(x - y) > EPSILON_ERROR) { |
75 | if (x > y) { |
76 | x -= y; |
77 | } else { |
78 | y -= x; |
79 | } |
80 | } |
81 | return x; |
82 | } |
83 | |
84 | /** |
85 | * Transforms a list of complex values to a list of double values by |
86 | * throwing away the imaginary part. |
87 | * |
88 | * @param values |
89 | * List of complex values to transform. |
90 | * @return The real part of the value list as doubles. |
91 | */ |
92 | public static List<Double> transformComplexToDouble(List<Complex> values) { |
93 | List<Double> resultList = new ArrayList<Double>(); |
94 | for (Complex complex : values) { |
95 | resultList.add(complex.getReal()); |
96 | } |
97 | return resultList; |
98 | } |
99 | |
100 | /** |
101 | * Transforms a list of double values to a list of complex values. The real |
102 | * parts are set to the values in the list, the imaginary part is set to |
103 | * zero. |
104 | * |
105 | * @param values |
106 | * List of double values to transform. |
107 | * @return A list of complex values equivalent to the doubles. |
108 | */ |
109 | public static List<Complex> transformDoubleToComplex(List<Double> values) { |
110 | List<Complex> resultList = new ArrayList<Complex>(); |
111 | for (Double d : values) { |
112 | resultList.add(new Complex(d)); |
113 | } |
114 | return resultList; |
115 | } |
116 | |
117 | /** |
118 | * Compares two doubles. |
119 | * |
120 | * @param d1 |
121 | * @param d2 |
122 | * @return True, if the difference between both values is lower than |
123 | * EPSILON_ERROR; false otherwise. |
124 | */ |
125 | public static boolean equalsDouble(double d1, double d2) { |
126 | boolean result = false; |
127 | if (d1 == Double.NaN && d2 == Double.NaN) { |
128 | result = true; |
129 | } else { |
130 | result = (Math.abs(d1 - d2) < EPSILON_ERROR); |
131 | } |
132 | return result; |
133 | } |
134 | |
135 | public static boolean equalsComplex(Complex z1, Complex z2) { |
136 | boolean result = false; |
137 | if (z1.isNaN() && z2.isNaN()) { |
138 | result = true; |
139 | } else { |
140 | result = equalsDouble(z1.getReal(), z2.getReal()) |
141 | && equalsDouble(z1.getImag(), z2.getImag()); |
142 | } |
143 | return result; |
144 | |
145 | } |
146 | |
147 | /** |
148 | * Compute the sum of probabilities associated with a set of |
149 | * IContinuousSamples. |
150 | * |
151 | * @param list |
152 | * @return the computed value. |
153 | */ |
154 | public static double sumOfCountinuousSamples(List<IContinuousSample> list) { |
155 | double sum = 0.0; |
156 | for (IContinuousSample s : list) |
157 | sum += s.getProbability(); |
158 | return sum; |
159 | } |
160 | |
161 | /** |
162 | * Compute the sum of probabilities associated with a set of ISamples. |
163 | * |
164 | * @param list |
165 | * @return the computed value. |
166 | */ |
167 | public static double sumOfSamples(List<ISample> list) { |
168 | double sum = 0.0; |
169 | for (ISample s : list) { |
170 | sum += s.getProbability(); |
171 | System.out.println(sum); |
172 | } |
173 | return sum; |
174 | } |
175 | |
176 | /** |
177 | * Compute the sum of a set Doubles. |
178 | * |
179 | * @param list |
180 | * @return the computed value. |
181 | */ |
182 | public static double sumOfDoubles(List<Double> list) { |
183 | double sum = 0.0; |
184 | for (Double d : list) |
185 | sum += d; |
186 | return sum; |
187 | } |
188 | |
189 | /** |
190 | * Returns the cumulative probabilities of the list of input probabilities. |
191 | * The size of the result list might be smaller than the size of the input list, |
192 | * since the function terminates when it reaches 1.0. |
193 | * |
194 | * @param probabilityList |
195 | * @return |
196 | */ |
197 | public static List<Double> computeCumulativeProbabilities(List<Double> probabilityList) { |
198 | List<Double> resultList = new ArrayList<Double>(probabilityList.size()); |
199 | if (probabilityList == null || probabilityList.size() == 0) |
200 | throw new IllegalArgumentException("ProbabilityList is empty or null!"); |
201 | double prob = 0; |
202 | for(Double d : probabilityList){ |
203 | prob += d; |
204 | resultList.add(prob); |
205 | } |
206 | return resultList; |
207 | } |
208 | |
209 | /** |
210 | * @param samples |
211 | * @param prob |
212 | * @return |
213 | */ |
214 | public static HashMap<Double, Line> computeLines( |
215 | List<IContinuousSample> samples, List<Double> intervals) { |
216 | HashMap<Double, Line> lines = new HashMap<Double, Line>(); |
217 | lines.put(intervals.get(0), new Line(0, 0, samples.get(0).getValue(), |
218 | samples.get(0).getProbability())); |
219 | |
220 | for (int i = 1; i < intervals.size(); i++) { |
221 | double x1 = samples.get(i - 1).getValue(); |
222 | double y1 = intervals.get(i - 1); |
223 | double x2 = samples.get(i).getValue(); |
224 | double y2 = intervals.get(i); |
225 | if (y1 != y2) |
226 | lines.put(intervals.get(i), new Line(x1, y1, x2, y2)); |
227 | } |
228 | |
229 | return lines; |
230 | } |
231 | |
232 | public static Comparator<IContinuousSample> getContinuousSampleComparator() { |
233 | Comparator<IContinuousSample> comp = new Comparator<IContinuousSample>() { |
234 | @SuppressWarnings("unchecked") |
235 | public int compare(IContinuousSample o1, IContinuousSample o2) { |
236 | return ((Comparable) o1.getValue()).compareTo(o2.getValue()); |
237 | } |
238 | |
239 | }; |
240 | return comp; |
241 | } |
242 | |
243 | public static Comparator<ISample> getSampleComparator() { |
244 | Comparator<ISample> sComparator = new Comparator<ISample>() { |
245 | |
246 | @SuppressWarnings("unchecked") |
247 | public int compare(ISample o1, ISample o2) { |
248 | return ((Comparable) o1.getValue()).compareTo(o2.getValue()); |
249 | } |
250 | }; |
251 | return sComparator; |
252 | } |
253 | |
254 | public static String asString(double val) { |
255 | double rVal = ((double) Math.round(val * 10000.0)) / 10000.0; |
256 | return Double.toString(rVal); |
257 | } |
258 | |
259 | public static BigDecimal over(int n, int k) { |
260 | return factorial(n).divide(factorial(k).multiply(factorial(n - k))); |
261 | } |
262 | |
263 | public static BigDecimal over(int n, int[] nList){ |
264 | BigDecimal numerator = factorial(n); |
265 | BigDecimal denominator = BigDecimal.ONE; |
266 | for (int ni : nList) { |
267 | denominator = denominator.multiply(factorial(ni)); |
268 | } |
269 | return numerator.divide(denominator); |
270 | } |
271 | |
272 | |
273 | public static BigDecimal computeJointProbability(BigDecimal[] probList, int[] nList){ |
274 | assert(nList.length == probList.length); |
275 | BigDecimal result = BigDecimal.ONE; |
276 | for (int i = 0; i < nList.length; i++) { |
277 | result = result.multiply(probList[i].pow(nList[i])); |
278 | } |
279 | return result; |
280 | } |
281 | |
282 | |
283 | public static BigDecimal factorial(long n) { |
284 | if (n < 0) |
285 | return null; |
286 | if (n == 0) |
287 | return BigDecimal.ONE; |
288 | BigDecimal fac = BigDecimal.ONE; |
289 | for (long i = 1; i <= n; i++) { |
290 | fac = fac.multiply(new BigDecimal(i)); |
291 | } |
292 | return fac; |
293 | } |
294 | |
295 | public static boolean isNumeric(Object value) { |
296 | if ((value instanceof Double) || (value instanceof Integer) |
297 | || (value instanceof Long) || (value instanceof Float)) |
298 | return true; |
299 | return false; |
300 | } |
301 | |
302 | public static List<Complex> transformSampleToComplex(List<ISample> samples) { |
303 | List<Complex> resultList = new ArrayList<Complex>(); |
304 | for (ISample s : samples) { |
305 | resultList.add(new Complex(s.getProbability(), convertToDouble(s |
306 | .getValue()))); |
307 | } |
308 | return resultList; |
309 | } |
310 | |
311 | public static double convertToDouble(Object value) { |
312 | double r = 0.0; |
313 | if (value instanceof Double) { |
314 | r = (Double) value; |
315 | } else if (value instanceof Integer) { |
316 | r = ((Integer) value).doubleValue(); |
317 | } else if (value instanceof Boolean) { |
318 | r = ((Boolean) value).booleanValue() ? 1.0 : 0.0; |
319 | } else if (value instanceof Float) |
320 | r = ((Float) value).doubleValue(); |
321 | return r; |
322 | } |
323 | |
324 | public static double round(double value,double precision){ |
325 | long factor = (long)(1 / precision); |
326 | value *= factor; |
327 | long temp = Math.round(value); |
328 | return (double)temp / (double)factor; |
329 | } |
330 | |
331 | public static boolean lessOrEqual(double d1, double d2) { |
332 | return d1 <= d2 + EPSILON_ERROR; |
333 | } |
334 | |
335 | public static boolean less(double d1, double d2) { |
336 | return d1 < d2 && !equalsDouble(d1, d2); |
337 | } |
338 | } |