1 | package de.uka.ipd.sdq.pcmsolver.transformations; |
2 | |
3 | import org.apache.log4j.Logger; |
4 | |
5 | import de.uka.ipd.sdq.pcm.core.CoreFactory; |
6 | import de.uka.ipd.sdq.pcm.core.PCMRandomVariable; |
7 | import de.uka.ipd.sdq.pcm.seff.seff_performance.ParametricResourceDemand; |
8 | import de.uka.ipd.sdq.probfunction.ProbabilityDensityFunction; |
9 | import de.uka.ipd.sdq.probfunction.ProbabilityFunction; |
10 | import de.uka.ipd.sdq.probfunction.ProbabilityMassFunction; |
11 | import de.uka.ipd.sdq.probfunction.ProbfunctionFactory; |
12 | import de.uka.ipd.sdq.probfunction.math.IContinousPDF; |
13 | import de.uka.ipd.sdq.probfunction.math.IProbabilityDensityFunction; |
14 | import de.uka.ipd.sdq.probfunction.math.ManagedPDF; |
15 | import de.uka.ipd.sdq.probfunction.math.ManagedPMF; |
16 | import de.uka.ipd.sdq.probfunction.math.PDFConfiguration; |
17 | import de.uka.ipd.sdq.probfunction.math.exception.ConfigurationNotSetException; |
18 | import de.uka.ipd.sdq.probfunction.math.exception.DomainNotNumbersException; |
19 | import de.uka.ipd.sdq.probfunction.math.exception.FunctionNotInTimeDomainException; |
20 | import de.uka.ipd.sdq.stoex.DoubleLiteral; |
21 | import de.uka.ipd.sdq.stoex.Expression; |
22 | import de.uka.ipd.sdq.stoex.FunctionLiteral; |
23 | import de.uka.ipd.sdq.stoex.IntLiteral; |
24 | import de.uka.ipd.sdq.stoex.NumericLiteral; |
25 | import de.uka.ipd.sdq.stoex.ProbabilityFunctionLiteral; |
26 | import de.uka.ipd.sdq.stoex.analyser.probfunction.ProbfunctionHelper; |
27 | import de.uka.ipd.sdq.stoex.analyser.visitors.StoExPrettyPrintVisitor; |
28 | |
29 | /** |
30 | * Wraps the actual content of an expression to allow computation with it. |
31 | * Only supports probability density function or double so far. |
32 | * Allows to access the expression as a PDF or to get the mean value. |
33 | * @author martens |
34 | * |
35 | */ |
36 | public class ExpressionToPDFWrapper { |
37 | ProbabilityDensityFunction pdf; |
38 | Double meanValue; |
39 | Double standardDeviation; |
40 | boolean originalPDF; |
41 | |
42 | protected static Logger logger = Logger.getLogger("de.uka.ipd.sdq.pcmsolver.transformations"); |
43 | |
44 | public ExpressionToPDFWrapper(ProbabilityDensityFunction pdf){ |
45 | this.pdf = pdf; |
46 | this.originalPDF = true; |
47 | } |
48 | |
49 | /** |
50 | * Can create a wrapper for {@link ProbabilityFunctionLiteral}s and {@link NumericLiteral}s. |
51 | * @param rdExpression |
52 | * @return |
53 | */ |
54 | public static ExpressionToPDFWrapper createExpressionToPDFWrapper( |
55 | Expression rdExpression) { |
56 | if (rdExpression instanceof ProbabilityFunctionLiteral){ |
57 | ProbabilityFunctionLiteral probFuncLit = (ProbabilityFunctionLiteral) rdExpression; |
58 | ProbabilityFunction pf = probFuncLit.getFunction_ProbabilityFunctionLiteral(); |
59 | if (pf instanceof ProbabilityMassFunction){ |
60 | ProbabilityMassFunction pmf = (ProbabilityMassFunction)pf; |
61 | ManagedPMF managedPmf = new ManagedPMF(pmf); |
62 | double value = managedPmf.getExpectedValueDouble(); |
63 | return new ExpressionToPDFWrapper(value); |
64 | } else { |
65 | ProbabilityDensityFunction pdf = (ProbabilityDensityFunction)pf; |
66 | return new ExpressionToPDFWrapper(pdf); |
67 | } |
68 | } else if (rdExpression instanceof FunctionLiteral){ |
69 | FunctionLiteral fLit = (FunctionLiteral) rdExpression; |
70 | ProbabilityDensityFunction pdf = ProbfunctionHelper.createFunction(fLit.getParameters_FunctionLiteral(), fLit.getId(), ProbfunctionFactory.eINSTANCE); |
71 | return new ExpressionToPDFWrapper(pdf); |
72 | } else if (rdExpression instanceof NumericLiteral){ |
73 | Double value = getDoubleValueForNumericLiteral((NumericLiteral)rdExpression); |
74 | return new ExpressionToPDFWrapper(value); |
75 | } else { |
76 | StoExPrettyPrintVisitor printer = new StoExPrettyPrintVisitor(); |
77 | String solvedExprString = null; |
78 | if (rdExpression != null){ |
79 | solvedExprString = (String)printer.doSwitch(rdExpression); |
80 | } |
81 | throw new IllegalArgumentException("Handling expression "+solvedExprString+" in the ResourceDemandWrapper failed, could not cast it to "+ProbabilityFunctionLiteral.class+" or "+ FunctionLiteral.class); |
82 | } |
83 | } |
84 | |
85 | public ExpressionToPDFWrapper(Double meanValue){ |
86 | this.meanValue = meanValue; |
87 | this.standardDeviation = new Double(0); |
88 | this.originalPDF = false; |
89 | } |
90 | |
91 | public ProbabilityDensityFunction getPDF(){ |
92 | if (pdf == null && meanValue != null){ |
93 | ProbabilityDensityFunction pdfLit = convertLiteralsToPDFs(this.meanValue); |
94 | this.pdf = pdfLit; |
95 | } |
96 | return pdf; |
97 | } |
98 | |
99 | |
100 | public Double getMeanValue(){ |
101 | if (meanValue == null && pdf != null){ |
102 | ManagedPDF mpdf = new ManagedPDF(pdf); |
103 | try { |
104 | Double value = new Double(mpdf.getPdfTimeDomain().getArithmeticMeanValue()); |
105 | this.meanValue = value; |
106 | } catch (DomainNotNumbersException e) { |
107 | ContextWrapper.logger.error("Error calculating arithmetic mean value.", e); |
108 | e.printStackTrace(); |
109 | } catch (FunctionNotInTimeDomainException e) { |
110 | ContextWrapper.logger.error("Error calculating arithmetic mean value.", e); |
111 | e.printStackTrace(); |
112 | } catch (RuntimeException e){ |
113 | logger.error("Could not get mean value of PDF "+pdf.toString()); |
114 | throw e; |
115 | } |
116 | } |
117 | return meanValue; |
118 | } |
119 | |
120 | public Double getStandardDeviation(){ |
121 | if (this.standardDeviation == null && this.pdf != null){ |
122 | ManagedPDF mpdf = new ManagedPDF(pdf); |
123 | try { |
124 | IProbabilityDensityFunction probFunction = mpdf.getPdfTimeDomain(); |
125 | if (probFunction instanceof IContinousPDF){ |
126 | Double stdev = new Double(((IContinousPDF)probFunction).getStandardDeviation()); |
127 | this.standardDeviation = stdev; |
128 | } else { |
129 | this.standardDeviation = Double.NaN; |
130 | } |
131 | |
132 | } catch (DomainNotNumbersException e) { |
133 | ContextWrapper.logger.error("Error calculating arithmetic mean value.", e); |
134 | e.printStackTrace(); |
135 | } catch (FunctionNotInTimeDomainException e) { |
136 | ContextWrapper.logger.error("Error calculating arithmetic mean value.", e); |
137 | e.printStackTrace(); |
138 | } |
139 | } |
140 | return this.standardDeviation; |
141 | } |
142 | |
143 | |
144 | /** |
145 | * Converts the passed double to a PCMRandomVariable with a DoublePDF inside. |
146 | * Modifies the passed {@link PCMRandomVariable} and sets a DoublePDF "around" the |
147 | * resource demand if the resource demand was a constant. The |
148 | * DoublePDF depends on the distance in {@link PDFConfiguration#getCurrentConfiguration()}. |
149 | * @param actResDemSpecification |
150 | * @param rv |
151 | * @return |
152 | */ |
153 | private ProbabilityDensityFunction convertLiteralsToPDFs(Double demand) { |
154 | |
155 | double distance = 0.1; |
156 | try { |
157 | distance = PDFConfiguration.getCurrentConfiguration().getDistance(); |
158 | } catch (ConfigurationNotSetException e) { |
159 | e.printStackTrace(); |
160 | throw new RuntimeException("Converting literal to pdf failed, wring initialisation. ",e); |
161 | } |
162 | //Ensure that demand is larger than 0 (for the included loop to terminate). |
163 | //Hopefully, a negative demand is caught elsewhere... |
164 | if (demand > 0 && distance > 0){ |
165 | while (demand-distance<=0) distance/=10; |
166 | } |
167 | Double firstValue = new Double(demand-distance); |
168 | String newDemand = "DoublePDF[(" + |
169 | firstValue.toString()+ |
170 | ";0.0)("+demand+";1.0)(" + |
171 | new Double(demand+distance).toString()+";0.0)]"; |
172 | |
173 | PCMRandomVariable rv = CoreFactory.eINSTANCE.createPCMRandomVariable(); |
174 | rv.setSpecification(newDemand); |
175 | |
176 | ProbabilityFunctionLiteral exp = (ProbabilityFunctionLiteral)rv.getExpression(); |
177 | return (ProbabilityDensityFunction) exp.getFunction_ProbabilityFunctionLiteral(); |
178 | |
179 | } |
180 | |
181 | /** |
182 | * Returns whether this resource demand is a derived pdf (i.e. it has been created using a mean value) |
183 | * or whether it is an original pdf (i.e. the mean value is derived). |
184 | * @return true if it has been created using {@link #ResourceDemandWrapper(ParametricResourceDemand, ProbabilityDensityFunction)}, |
185 | * false if this has been created using {@link #ResourceDemandWrapper(ParametricResourceDemand, Double)}. |
186 | */ |
187 | public boolean isOriginalPDF(){ |
188 | return this.originalPDF; |
189 | } |
190 | |
191 | private static Double getDoubleValueForNumericLiteral(NumericLiteral rdExpression) { |
192 | double value = 0; |
193 | if (rdExpression instanceof DoubleLiteral){ |
194 | value = ((DoubleLiteral) rdExpression).getValue() ; |
195 | } else if (rdExpression instanceof IntLiteral){ |
196 | value = ((IntLiteral) rdExpression).getValue(); |
197 | } else throw new RuntimeException("Unknown type of numeric literal: "+rdExpression.getClass()); |
198 | return value; |
199 | } |
200 | |
201 | |
202 | } |