1 | package de.uka.ipd.sdq.pcmsolver.transformations.pcm2regex; |
2 | |
3 | import java.util.concurrent.TimeUnit; |
4 | |
5 | import org.apache.log4j.Logger; |
6 | import org.eclipse.emf.ecore.EObject; |
7 | |
8 | import de.uka.ipd.sdq.pcm.usagemodel.UsageScenario; |
9 | import de.uka.ipd.sdq.pcmsolver.exprsolver.ExpressionSolver; |
10 | import de.uka.ipd.sdq.pcmsolver.models.PCMInstance; |
11 | import de.uka.ipd.sdq.pcmsolver.runconfig.PCMSolverWorkflowRunConfiguration; |
12 | import de.uka.ipd.sdq.pcmsolver.transformations.EMFHelper; |
13 | import de.uka.ipd.sdq.pcmsolver.transformations.SolverStrategy; |
14 | import de.uka.ipd.sdq.pcmsolver.visitors.UsageModelVisitor; |
15 | import de.uka.ipd.sdq.pcmsolver.visualisation.JFVisualisation; |
16 | import de.uka.ipd.sdq.probfunction.math.IProbabilityDensityFunction; |
17 | import de.uka.ipd.sdq.probfunction.math.IProbabilityFunctionFactory; |
18 | import de.uka.ipd.sdq.probfunction.math.ISamplePDF; |
19 | import de.uka.ipd.sdq.probfunction.math.ManagedPDF; |
20 | import de.uka.ipd.sdq.probfunction.math.PDFConfiguration; |
21 | import de.uka.ipd.sdq.probfunction.math.exception.ConfigurationNotSetException; |
22 | import de.uka.ipd.sdq.probfunction.math.exception.ProbabilityFunctionException; |
23 | import de.uka.ipd.sdq.probfunction.math.exception.UnknownPDFTypeException; |
24 | import de.uka.ipd.sdq.probfunction.print.ProbFunctionCSVPrint; |
25 | import de.uka.ipd.sdq.spa.expression.Expression; |
26 | |
27 | /** |
28 | * This is an excerpt of Heiko's dissertation (see below for link) |
29 | * |
30 | * The Stochastic Regular Expression (SRE) model is an analytical performance |
31 | * model in the class of semi-Markov processes [Tri01]. It consists of a |
32 | * discrete time Markov-chain (DTMC) to model state transitions, but the sojourn |
33 | * time in each state can follow arbitrary probability distributions instead of |
34 | * being limited to exponential distributions as in Markov chains. Furthermore, |
35 | * SREs are hierarchically structured and do not allow cycles in the embedded |
36 | * DTMC for more accurate predictions. Chapter 6.3.3 will provide the syntax and |
37 | * semantics of SREs, afterwards Chapter 6.3.4 shows how to compute overall |
38 | * sojourn times with SREs. Only a partial transformation of PCM instances to |
39 | * SREs is possible, because of the model�s limited expressiveness. The |
40 | * transformation is straight-forward, as the control flow modelling of PCM |
41 | * instances and SREs are closely aligned. Chapter 6.3.5 will describe the |
42 | * transformation PCM2SRE. While allowing accurate predictions by supporting |
43 | * arbitrary distribution functions for timing values, SRE are limited to |
44 | * analysing single-user scenarios. They do not include queues or control flow |
45 | * forks, and cannot express contention effects due to concurrent requests. |
46 | * However, they provide a fast method of producing performance predictions |
47 | * during early development stages, as they are usually more quickly solved than |
48 | * running a simulation. Chapter 6.3.6 discusses the assumptions underlying SREs |
49 | * in detail. The SRE model will be used for a performance prediction in a case |
50 | * study in Chapter 7.3.3. |
51 | * |
52 | * @see Heiko's dissertation, section 6.3 at |
53 | * http://docserver.bis.uni-oldenburg.de |
54 | * /_publikationen/dissertation/2008/kozpar08/pdf/kozpar08.pdf |
55 | * @author Heiko Koziolek |
56 | * |
57 | */ |
58 | public class Pcm2RegExStrategy implements SolverStrategy { |
59 | |
60 | Expression stoRegEx; |
61 | |
62 | protected IProbabilityFunctionFactory iProbFuncFactory = |
63 | IProbabilityFunctionFactory.eINSTANCE; |
64 | |
65 | private static Logger logger = Logger.getLogger(Pcm2RegExStrategy.class.getName()); |
66 | |
67 | private long overallDuration = 0; |
68 | |
69 | private PCMSolverWorkflowRunConfiguration configuration; |
70 | |
71 | public Pcm2RegExStrategy(PCMSolverWorkflowRunConfiguration configuration) { |
72 | this.configuration = configuration; |
73 | } |
74 | |
75 | public void loadTransformedModel(String fileName) { |
76 | EObject object = EMFHelper.loadFromXMIFile(fileName); |
77 | if (object instanceof Expression){ |
78 | this.stoRegEx = (Expression)object; |
79 | } else { |
80 | logger.warn("Could not load "+fileName+" because is not an Expression model"); |
81 | } |
82 | } |
83 | |
84 | public void solve() { |
85 | if (stoRegEx != null){ |
86 | long timeBeforeCalc = System.nanoTime(); |
87 | ExpressionSolver solver = new ExpressionSolver(); |
88 | ManagedPDF resultPDF = solver.getResponseTime(stoRegEx); |
89 | |
90 | if(resultPDF == null){ |
91 | logger.error("StochasticRegularExpression could not be solved!"); |
92 | return; |
93 | } |
94 | |
95 | long timeAfterCalc = System.nanoTime(); |
96 | long duration = TimeUnit.NANOSECONDS.toMillis(timeAfterCalc-timeBeforeCalc); |
97 | overallDuration += duration; |
98 | logger.info("Finished Running ExprSolver:\t"+ duration + " ms"); |
99 | logger.debug("Resulting PDF:\t\t\t"+resultPDF.toString()); |
100 | logger.trace("As csv:\n\nx;probability\n"+new ProbFunctionCSVPrint().doSwitch(resultPDF.getModelBoxedPdf())); |
101 | |
102 | visualize(resultPDF.getPdfTimeDomain()); |
103 | long timeAfterVisualisation = System.nanoTime(); |
104 | |
105 | //logger.info("PDF in time domain: "+resultPDF.getPdfTimeDomain()); |
106 | |
107 | duration = TimeUnit.NANOSECONDS.toMillis(timeAfterVisualisation-timeAfterCalc); |
108 | overallDuration += duration; |
109 | logger.info("Finished Visualisation:\t\t"+ duration + " ms"); |
110 | logger.info("Finished SRE-Solver:\t\t"+ overallDuration+ " ms"); |
111 | |
112 | } else |
113 | logger.error("No StochasticRegularExpression available for solution!"); |
114 | } |
115 | |
116 | public void storeTransformedModel(String fileName) { |
117 | |
118 | EMFHelper.saveToXMIFile(stoRegEx, fileName); |
119 | |
120 | } |
121 | |
122 | public void transform(PCMInstance model) { |
123 | |
124 | if (!this.configuration.isUseSREInputModel()){ |
125 | long timeBeforeCalc = System.nanoTime(); |
126 | runDSolver(model); |
127 | runPcm2RegEx(model); |
128 | printStoRegEx(); |
129 | |
130 | storeTransformedModel(this.configuration.getSREOutputFile()); |
131 | |
132 | long timeAfterCalc = System.nanoTime(); |
133 | long duration = TimeUnit.NANOSECONDS.toMillis(timeAfterCalc-timeBeforeCalc); |
134 | overallDuration += duration; |
135 | logger.info("Finished Running PCM2SRE:\t\t"+ duration + " ms"); |
136 | } else { |
137 | String filename = this.configuration.getSREOutputFile(); |
138 | loadTransformedModel(filename); |
139 | logger.warn("Using predefined Expression model "+filename); |
140 | } |
141 | |
142 | |
143 | } |
144 | |
145 | private void printStoRegEx() { |
146 | ExpressionPrinter expPrinter = new ExpressionPrinter(); |
147 | expPrinter.doSwitch(stoRegEx); |
148 | logger.debug("ExpressionPrinter: "+expPrinter.getOutput()); |
149 | } |
150 | |
151 | private void runPcm2RegEx(PCMInstance model) { |
152 | TransformUsageModelVisitor umVisit = new TransformUsageModelVisitor(model); |
153 | UsageScenario us = (UsageScenario)model.getUsageModel().getUsageScenario_UsageModel().get(0); |
154 | try { |
155 | stoRegEx = (Expression)umVisit.doSwitch(us.getScenarioBehaviour_UsageScenario()); |
156 | } catch (Exception e) { |
157 | logger.error("Transforming the PCM instance into a stochastic regular expression caused an Exception! Check your model for broken references, e.g. old, dangling Connectors." + e.getMessage()); |
158 | e.printStackTrace(); |
159 | |
160 | throw new RuntimeException(e); |
161 | } |
162 | } |
163 | |
164 | private void runDSolver(PCMInstance model) { |
165 | UsageModelVisitor visitor = new UsageModelVisitor(model); |
166 | try { |
167 | UsageScenario us = (UsageScenario) model.getUsageModel() |
168 | .getUsageScenario_UsageModel().get(0); |
169 | visitor.doSwitch(us.getScenarioBehaviour_UsageScenario()); |
170 | } catch (Exception e) { |
171 | logger.error("Running the dependency solver caused an Exception! Check your model for broken references, e.g. old, dangling Connectors." + e.getMessage()); |
172 | e.printStackTrace(); |
173 | |
174 | throw new RuntimeException(e); |
175 | } |
176 | } |
177 | |
178 | private void visualize(IProbabilityDensityFunction iPDF) { |
179 | ISamplePDF samplePDF = null; |
180 | try { |
181 | samplePDF = iProbFuncFactory.transformToSamplePDF(iPDF); |
182 | } catch (UnknownPDFTypeException e1) { |
183 | // TODO Auto-generated catch block |
184 | e1.printStackTrace(); |
185 | } |
186 | |
187 | try { |
188 | double dist = 0.0; |
189 | try { |
190 | dist = PDFConfiguration.getCurrentConfiguration().getDistance(); |
191 | } catch (ConfigurationNotSetException e) { |
192 | // TODO Auto-generated catch block |
193 | e.printStackTrace(); |
194 | } |
195 | JFVisualisation vis = new JFVisualisation(dist); |
196 | vis.addSamplePDF(samplePDF,"Execution Time"); |
197 | vis.visualizeOverlay(); |
198 | } catch (ProbabilityFunctionException e) { |
199 | e.printStackTrace(); |
200 | } |
201 | } |
202 | |
203 | } |